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a b s t r a c t

A new explicit time-reversible orbit integrator for the equations of motion in a static
homogeneous magnetic field – called Cyclotronic integrator – is presented. Like Spreiter
and Walter’s Taylor expansion algorithm, for sufficiently weak electric field gradients this
second order method does not require a fine resolution of the Larmor motion; it has how-
ever the essential advantage of being symplectic, hence time-reversible. The Cyclotronic
integrator is only subject to a linear stability constraint (XDt < p, X being the Larmor angu-
lar frequency), and is therefore particularly suitable to electrostatic Particle In Cell codes
with uniform magnetic field where X is larger than any other characteristic frequency,
yet a resolution of the particles’ gyromotion is required. Application examples and a
detailed comparison with the well-known (time-reversible) Boris algorithm are presented;
it is in particular shown that implementation of the Cyclotronic integrator in the kinetic
codes SCEPTIC and Democritus can reduce the cost of orbit integration by up to a factor
of ten.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The Boris integration scheme [1], designed to solve the single particle equations of motion in electric and magnetic fields
_x ¼ v
m _v ¼ QðEþ v ^ BÞ

�
ð1Þ
is perhaps the most widely used orbit integrator in explicit Particle In Cell (PIC) simulations of plasmas; here x and v are the
particle position and velocity, m its mass and Q its charge. The idea of the Boris integrator is to offset x and v by half a time-
step Dt/2, and update them alternately using the following Drift (D) and Kick (K) operators:
DBðDtÞ :¼ x0 � x ¼ Dtv; ð2Þ

KBðDtÞ :¼ v0 � v ¼ Dt
Q
m

Eðx0Þ þ v0 þ v
2
^ Bðx0Þ

� �
: ð3Þ
Although seemingly implicit (the right hand side of Eq. (3) contains both v and v0, the velocities at the beginning and end
of the step), KB can easily be inverted and the scheme is in practice explicit. The reasons for Boris scheme’s popularity are
twofold.
. All rights reserved.
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It must first be recognized that the algorithm is extremely simple to implement, and offers second order accuracy while
requiring only one force (or field) evaluation per time-step. Other integrators such as the usual or midpoint second order
Runge–Kutta [2] require two such evaluations per step, thus considerably increasing the computational cost. The second rea-
son is that for stationary electric and magnetic fields, the errors on conserved quantities such as the energy, or the canonical
angular momentum when the system is axisymmetric, are bounded for an infinite time (the error on those quantities is sec-
ond order in Dt as is the scheme). Those conservation properties, usually observed on long-time simulations of periodic or
quasi-periodic orbits, are characteristic of time-reversible integrators [3].

Unfortunately the Boris scheme requires a fine resolution of the Larmor angular frequency X = QjBj/m, typically
XD t [ 0.3 for a 1% accuracy [1], which is penalizing if X is much larger than any other characteristic frequency of the prob-
lem. In the regime of static uniform magnetic field considered in this paper, Spreiter and Walter [4] previously attempted to
relax the Larmor constraint, and developed a ‘‘Taylor expansion algorithm”. Their method however suffers from non time-
reversibility, as well as a ‘‘weak” unconditional unstability particularly apparent when XDt [ O(1).

We developed an alternative integrator by taking advantage of the fact that in a uniform magnetic field and zero electric
field the particle trajectory has a simple analytic form. Using this method, called Cyclotronic integrator, the time-step is in
theory only limited by linear stability considerations (leading to XDt < p). By construction, in static uniform magnetic fields
the Cyclotronic integrator is second order and symplectic [5]; in other words it preserves the geometric structure of the
Hamiltonian flow, which guarantees excellent conservation properties. The authors’ main motivation for the present work
was to increase the speed of electrostatic PIC codes such as SCEPTIC [6,7] or Democritus [8], designed to study the electro-
static flow of a uniform magnetoplasma past an electrode. For this system, it is indeed necessary to resolve the Larmor rota-
tion in order to accurately compute the orbit intersections with the collector. The appropriate time-step regime is
XDt [ O(1); Spreiter and Walter’s algorithm can therefore not be used because of its unstability, while the Boris scheme
is too expensive for strongly magnetized plasmas. The Cyclotronic integrator can also be useful to the simulation of other
systems, such as intermediately magnetized Penning traps where the magnetic field is not strong enough for a guiding-cen-
ter approach to be applicable [9].

The paper is organized as follows: After a review of Boris and Spreiter and Walter’s algorithms (Section 2), we present
a construction of the Cyclotronic integrator where its symplectic character straightforwardly appears (Section 3). A linear
stability analysis of the these algorithms is performed in Section 4. We then proceed with the application of the
Cyclotronic integrator to the ideal Penning trap system (Section 5) and to the PIC codes SCEPTIC and Democritus
(Section 6).
2. Review of previous integrators

2.1. Boris integrator

The Boris integrator [1] is a time-splitting method; the equations of motion (1) are separated in two parts that are suc-
cessively integrated in a Verlet form:
x
v

� �
ðt þ DtÞ ¼ DBðDt=2Þ � KBðDtÞ � DBðDt=2Þ

x
v

� �
ðtÞ; ð4Þ
where the Boris Drift and Kick operators (DB and KB) are defined in Eqs. (2) and (3). If RDu denotes a rotation of characteristic
vector
Du ¼ 2atan
Dt
2

X
� �

B
B
; ð5Þ
KB(Dt): = v ? v0 can be split in the following way [1]:
KBðDtÞ :¼

v� ¼ v þ QEDt
2m ;

v�� ¼ RDuv�;

v0 ¼ v�� þ QEDt
2m :

8>><
>>: ð6Þ
Eqs. (2) and (6) readily show that the Boris integrator is time-reversible, even for non uniform magnetic fields. Indeed the
Drift operator does not act on the particle velocity, and the Kick operator does not act on the position. In PIC codes it is cus-
tomary to define the position and velocity with half a time-step of offset, which amounts to concatenating the two adjacent
DB(Dt/2) from successive steps in Eq. (4).

A popular variant of this integrator (known as the ‘‘tan” transformation [1]), second order in Dt, consists in letting
Du ¼ XDt B

B in Eq. (6). Regardless of the form used for Du however, the Drift operator (2) requires XDt� p, which is a severe
limitation if the other characteristic frequencies (such as the quadrupole harmonic frequency x0 introduced in Section 4, or
the plasma frequency in dynamic systems) are much smaller than X.
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2.2. Spreiter and Walter’s Taylor expansion algorithm

An intuitive way to build an orbit integrator for Eq. (1) with homogeneous magnetic field, not subject to the Larmor con-
straint, is to take advantage of the available analytic form of a charged particle’s trajectory in uniform electric and magnetic
fields. In the plane normal to B = Bez, using the complex notation for the perpendicular part of the vectors (x = x + iy,v = vx +
ivy and E = Ex + iEy) [4]:
vðt þ DtÞ ¼ vðtÞ þ i
E
B

� �
expð�iXDtÞ � i

E
B
; ð7Þ

xðt þ DtÞ ¼ xðtÞ þ i
X

vðtÞ þ i
E
B

� �
expð�iXDtÞ � 1½ � � i

E
B

Dt: ð8Þ
If the electric field is non uniform, the scheme provided by Eqs. (7) and (8) is second order accurate for the position and
first order accurate for the velocity. In the same regime of homogeneous magnetic field, Spreiter and Walter derived a one-
step integrator (Eqs. (28)–(35) in Ref. [4]) based on a Taylor expansion of the equations of motion (1) in which XDt is not
assumed to be small. Their integrator is equivalent to Eqs. (7) and (8), with a corrective term added to Eq. (8) in order for the
velocity update to be second order accurate.

In a uniform electric field, Spreiter and Walter’s algorithm integrates the exact orbit regardless of the time-step. Because
the electric field at the beginning and end of each time-step does not enter the propagation equations symmetrically, it is
unfortunately not time-reversible.
3. Derivation of the Cyclotronic integrator

3.1. Symplectic and time-reversible integration

Time-reversible integrators contain the subclass of symplectic schemes, which has received considerable attention in the
last decades in particular in connection with astrodynamics [10] and accelerator physics [11].

The fundamental idea behind symplectic integration of (systems of) Ordinary Differential Equations (ODEs) is to ensure
that the chosen scheme is a canonical map, in other words that there exist canonical coordinates (q,p) related to the physical
variables (x,v) such that the flow Z(s) = (q,p)(s) derives from a Hamiltonian eH:
dp
dt
¼ �rq

eH dq
dt
¼ rp

eH; ð9Þ
in which case there exists a Liouville operator WeH such that
dZ
dt
¼ fZ; eHðZÞg ¼ WeH Z ð10Þ
or equivalently
8s 2 R zðsÞ ¼ e
sWeH Zð0Þ; ð11Þ
where {�,�} stands for the Poisson bracket. Indeed if the original ODEs derive from a Hamiltonian H(q,p), one can show that
the Hamiltonian from which the flow of a consistent nth order symplectic integrator derives takes the form:eHðq;pÞ ¼ Hðq;pÞ þ dHðq;p;DtÞ, where dH = O(Dtn) [12]. Because the integrator exactly preserves eH and its integral invari-
ants, it is expected to conserve slightly modified expressions of the integral invariants of H. Hence no secular drift in the ori-
ginal problem’s energy or integral invariants is to occur. For a more complete introduction on symplectic integration
avoiding unnecessary mathematical formalism, the reader is referred to Ref. [5].

The Boris integrator is known for its outstanding conservation properties. However, as pointed out by Stoltz et al. [13],
there is no guarantee that it is symplectic. It is nonetheless time-reversible, and it has been shown under very reasonable
assumptions that this condition is sufficient to explain the absence of secular drift in the conserved quantities, provided
the orbit we integrate is periodic or quasi-periodic [3].

3.2. Cyclotronic integrator

The time independent Hamiltonian for single particle motion in the presence of a uniform background magnetic field
B = Bez can easily be written in cylindrical coordinates:
Hðq;pÞ ¼
p2

q

2m
þ p2

z

2m
þ 1

2m
pu

q
� QAuðq; zÞ

� �2

þ Q/ðqÞ; ð12Þ
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where the generalized momentum p is given by
pz ¼ m _z;

pq ¼ m _q;

pu ¼ mq2 _uþ Q Au
mq

� �
;

8>><
>>: ð13Þ
and q = (z,q,u). The vector potential A satisfies $ ^ A ¼ Bez and is chosen to be A ¼ Bq
2 eu, while E = � $/.

The flow deriving from the full Hamiltonian H in Eq. (12) is not integrable. It is however possible to rewrite H as
H = H1 + H2 where the flows associated with H1,2 are exactly integrable for any time-step Dt as follows:

� Drift part: H1ðq;pÞ ¼
p2
q

2mþ
p2

z
2mþ 1

2m
pu
q � QAuðq; zÞ

� �2
. Uniform helical motion around B with angle Du ¼ XDt B

B.
� Kick part: H2(q,p) = Q/(q). Momentum increase of vector �Q$/Dt.

Using the Baker Campbell Hausdorff formula [5], one can show that
eDtWH ¼ eðDt=2ÞWH1 � eDtWH2 � eðDt=2ÞWH1 þ OðDt3Þ: ð14Þ
A second order symplectic integrator for H is therefore
PCðDtÞ ¼ DCðDt=2Þ � KCðDtÞ � DCðDt=2Þ; ð15Þ
where DC(Dt) and KC(Dt) are the Drift and Kick operators in (x,v) space corresponding to exp(DtWH1) and exp(DtWH2) in
(q,p) space.

One can straightforwardly show that (in a homogeneous magnetic field) the Cyclotronic integrator is second order accu-
rate. In addition, in the absence of electric field it is exact regardless of Dt since it exactly resolves the Larmor motion asso-
ciated with the Hamiltonian H1. This is of course not the case with the Boris scheme.

A practical implementation in Cartesian coordinates of the Cyclotronic integrator ready to use in PIC codes where B = Bez

is given by Eqs. (17) and (18), where the two half Drifts in Eq. (15) have been staggered together. However, because here the
Drift operator advances both the position and the velocity, one can not interpret this operation as simply shifting v and x by
half a time-step. Applying both operators results in (x,v) ? (x0,v0) ? (x00,v00). With Du = XDt:

(1) Drift
DCðDtÞ :¼
z0 ¼ zþ vzDt;

ðx; yÞ0 ¼ ðx; yÞc þ RDuððx; yÞ � ðx; yÞcÞ;
ðvx; vyÞ0 ¼ RDuðvx;vyÞ;

8><
>: ð16Þ

(x,y)c(t) being the center of the current Larmor circle when any electric field is disregarded. More explicitly:

DCðDtÞ :¼

z0 � z ¼ vzDt;

x0 � x ¼ vy�vy cosðXDtÞþvx sinðXDtÞ
X ;

y0 � y ¼ �vxþvx cosðXDtÞþvy sinðXDtÞ
X ;

v 0x ¼ vx cosðXDtÞ þ vy sinðXDtÞ;
v 0y ¼ vy cosðXDtÞ � vx sinðXDtÞ:

8>>>>>><
>>>>>>:

ð17Þ
(2) Kick:
KCðDtÞ :¼ v00 � v0 ¼ �Q$/ðx0ÞDt=m: ð18Þ
3.3. Uniform electric field

As a price for their time-reversibility, the Boris and the Cyclotronic integrators don’t share Spreiter and Walter’s algorithm
property of computing the exact orbit in a uniform electric field E. This is not an issue per se because a uniform electric field
can always be made to vanish by an appropriate change of frame (provided B – 0 of course). In practice therefore time-steps
will be solely limited by electric field gradients.

It is however interesting to notice that although the Cyclotronic integrator does not exactly resolve the motion for non-
zero uniform E, it computes an orbit whose Larmor center exactly moves with the drift velocity E ^ B/B2. Fig. 1 shows the
orbit calculated with the three integrators assuming E = Eex and a zero initial velocity. For this configuration XDt is the only
relevant dimensionless parameter provided velocities are normalized to E/B (the drift velocity); for this example we use
XDt = p/2.

For completeness, we mention that gyrokinetic orbit integrators would also exactly respect the E ^ B/B2 Larmor center
motion in the uniform electric field case. However those require XDt� 1, and are typically used in perturbative particle
codes designed to analyze large-scale phenomena such as drift instabilities or zonal flows in Tokamaks [14].
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4. Linear stability

In addition to being consistent with the original equation, it is desirable that an integration scheme be stable. However,
proving that this is the case for arbitrary Ordinary Differential Equations (ODEs) and initial conditions is in general not fea-
sible, and stability properties are therefore usually assessed on linearized forms of the propagation equations. That an orbit
integrator be linearly stable for any particle position and time is a necessary condition for its stability in the presence of an
arbitrary potential distribution, and is in practice sufficient.

4.1. Linear propagation operators

Let us consider a uniform background magnetic field B = Bez, and an ideal quadrupole potential distribution:
/ðrÞ ¼ �m
Q

1
2
x2

0xx2 þ 1
2
x2

0yy2 � 1
2
ðx2

0x þx2
0yÞz2

� �
; ð19Þ
where � = ±1.
Because transverse and axial dynamics are decoupled, we can concentrate on the transverse motion and treat the prob-

lem as two-dimensional; we therefore write the position and velocity evolution between time-steps n and n + 1 as
x

y

vxDt

vyDt

0
BBB@

1
CCCA

nþ1

¼ P

x

y

vxDt

vyDt

0
BBB@

1
CCCA

n

; ð20Þ
where P is the linear propagation operator depending on the dimensionless quantities �x0x,yDt and XDt. The integration
scheme is stable if and only if the spectral radius of P (maximal absolute value of its eigenvalues) satisfies
maxðjSpðPÞjÞ 6 1: ð21Þ
For the Cyclotronic integrator, the operator PC to be used in Eq. (20) corresponding to Eq. (15) is:
PCðDtÞ ¼ DCðDt=2Þ � KCðDtÞ � DCðDt=2Þ; ð22Þ
where (c.f. Eqs. (17) and (18)):
DCðDt=2Þ ¼

1 0 sinðXDt=2Þ
XDt

1�cosðXDt=2Þ
XDt

0 1 � 1�cosðXDt=2Þ
XDt

sinðXDt=2Þ
XDt

0 0 cosðXDt=2Þ sinðXDt=2Þ
0 0 � sinðXDt=2Þ cosðXDt=2Þ

0
BBBB@

1
CCCCA; KCðDtÞ ¼

1 0 0 0
0 1 0 0

��x2
0xDt2 0 1 0
0 ��x2

0yDt2 0 1

0
BBB@

1
CCCA: ð23Þ
For the Boris integrator, the operator PB corresponding to Eq. (4) is:
PBðDtÞ ¼ DBðDt=2Þ � KBðDtÞ � DBðDt=2Þ; ð24Þ
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where DB(Dt/2) is the operator associated with the half Drift:
Fig. 2.
the har
line is t
DBðDt=2Þ ¼

1 0 1=2 0
0 1 0 1=2
0 0 1 0
0 0 0 1

0
BBB@

1
CCCA; ð25Þ
and KB(Dt) = KB
a (Dt/2) � KB

b(Dt) � KB
a(Dt/2) associated with the Kick. KB

a(Dt/2) is half the electric part of the Kick and
KBoris

b(D t) the magnetic part. Using the ‘‘tan” modification:
Ka
BðDt=2Þ ¼

1 0 0 0
0 1 0 0

��x2
0xDt2=2 0 1 0
0 ��x2

0yDt2=2 0 1

0
BBB@

1
CCCA; Kb

BðDtÞ ¼

1 0 0 0
0 1 0 0
0 0 cosðXDtÞ sinðXDtÞ
0 0 � sinðXDtÞ cosðXDtÞ

0
BBB@

1
CCCA: ð26Þ
Writing the operators in PIC form (one full drift followed by one full Kick) results in different propagation matrices P, but
stability conditions are not affected.

4.2. Transversely isotropic harmonic oscillator

If � = �1 the electrostatic force is repulsive in the q-direction and attractive in the z-direction; if in addition
x0x = x0y = x0 we simulate an ideal Penning trap system (see Section 5). When � = 1, the opposite holds and the particle
is not axially confined (i.e. escapes on the z-axis); however in this section we only study the transverse motion and do
not worry about z-axis stability.

Fig. 2 shows the corresponding linear stability diagrams, and a few important points should be noticed. In the absence of
electric field both schemes are stable regardless of XDt. In the absence of magnetic field, both schemes are stable if
0 6 �x0Dt 6 2, which is a well known result [1]. In the limit j�x0Dtj � 1 with � = �1, the scheme is unstable if X/x0 < 2:
this is the physical Penning trap instability, and hence independent of the integrator (see Section 5 and Eq. (27)). Reliable
orbit integration requires one to operate in the first stability region containing the origin. For jx0Dtj small enough, XDt < 2p
is required.

4.3. Transversely one-dimensional harmonic oscillator

Let us now assume that x0y = 0. The corresponding stability diagrams are shown in Fig. 3, and are slightly different from
the ones in Fig. 2 although the main characteristics are similar. It is interesting to notice that the stability diagram for the
Cyclotronic integrator is scaled down by a factor of 2 with respect to the x0x = x0y case.

For arbitrary physically stable harmonic potentials, numerical stability diagrams are in between the ones shown in Figs. 2
and 3. Because in most of the simulations the potential distribution is not harmonic however, we keep as linear stability
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condition the tighter possible linear constraint. In other words for jx0Dtj small enough, in order to avoid islands of instability
the time-step should be limited to XDt < p (with either Boris or the Cyclotronic schemes).

4.4. Taylor expansion algorithm of Spreiter and Walter

In addition to not being time-reversible, Spreiter and Walter’s algorithm has a Jacobian determinant slightly greater than
unity [4], which usually leads to instability [2]. It is in fact possible to assert that the scheme is unconditionally unstable for
any parameters except if XDt = 0 and 0 6 �x0Dt 6 2, in which case the algorithm is merely the standard unmagnetized leap-
frog [1].

As an illustration of this unconditional unstability, Fig. 4 shows contour-lines of d = max(jSp(PT)j) � 1, where PT is the
propagation matrix corresponding to the Taylor expansion algorithm in the presence of the electrostatic potential of Eq.
(19) with x0x = x0y = x0. PT is easily obtained from Eqs. (28)–(35) in Ref. [4].

Fig. 4(b) shows that for large XDt the spectral radius contour lines of the Taylor expansion propagator PT are parabolic
(red dotted parabolae: XDt / (x0Dt)2). In other words for fixed x0Dt, as XDt ?1 the scheme tends to stability (d ? 0). This
explains why the authors in Ref. [4] observed that their algorithm performance increases with rising magnetic field.
−0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ε⋅ω0⋅Δ t

(Ω
⋅Δ

 t)
/π

δ<10−8δ<10−6 δ<10−6

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7

8

9

ε⋅ω0⋅Δ t

(Ω
⋅Δ

 t)
/π

δ<10−8δ<10−6 δ<10−6

Fig. 4. Contour-plots of d = max(jSp(PT)j) � 1 = 10�6 (Solid black line) and d = 10�8 (Dash-dotted black line) in the vicinity of the origin (a) and for larger XDt
(b). The scheme is unconditionally unstable (d > 0) except for XDt = 0 and 0 6 �x0Dt 6 2 in which case d = 0. The red dashed line (a) corresponds to the
Penning trap instability, and the red dotted parabola (b) to the large XDt limit of the contour-lines.
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The Taylor expansion algorithm is therefore a very interesting option when it is appropriate to use XDt� 1, and provided
we do not need to integrate over too long a time-period. For instance if one wishes to integrate 106 time-steps, it is approx-
imately necessary to be inside the ‘‘d = 10�6” contour line in Fig. 4(b) whose equation is XDt 	 225(x0Dt)2; in other words
X/x0� 225x0Dt is required.

A more detailed comparison between this algorithm and the Cyclotronic integrator is presented in Section 5.3.

5. Application 1: the ideal Penning trap

A Penning trap is a cylindrically symmetric device with a static magnetic field along the z-axis and a quadrupole electro-
static field of the form of Eq. (19) with x0 = x0x = x0y and � = �1. Elementary algebra shows that the trap is physically stable
if and only if:
X P 2x0; ð27Þ
and the orbit is found to be a linear combination of the three following angular frequencies [15]:
Axial x0;

Modified Cyclotron xMC ¼ X
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2 Þ

2 �x2
0

q
;

Magnetron xMag ¼ X
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
2


 �2 �x2
0

q
:

8>>><
>>>: ð28Þ
In the transverse direction the orbit is a superposition of the fast Modified Cyclotron oscillation and the slow Magnetron
motion.

5.1. Frequency shifts

Since the electric field depends linearly on the position, there is no natural scale length and one can consider the position
to be dimensionless. Velocities (hence frequencies) are normalized to x0.

Fig. 5 shows the particle’s numerically-calculated orbit projected on the x-axis for two different values of XDt, the only
physically meaningful quantity X/x0 being kept fixed (X/x0 = 10p/3). Fig. 5(a) corresponds to a case where Dt is six times
smaller than the Larmor period (XDt = p/3). The fourth order Runge–Kutta integrator is not satisfactory since it operates as a
low-pass filter, and after a few time-steps the Cyclotron oscillation has been damped out: only the Magnetron motion is re-
solved. The Boris integrator resolves both frequencies but those are offset (The Magnetron frequency shift is clearly visible in
the figure.) The Cyclotronic integrator resolves both frequencies as well, but the error is much smaller than with the Boris
integrator.

Fig. 5(b) corresponds to XDt = 3p/2, situation in which the time-step is longer than half the Larmor period. As shown in
Section 4.2, both Boris and the Cyclotronic integrators are stable for this choice of time-step; according to the Nyquist the-
orem however this implies xMC cannot be properly resolved. Fig. 5(b) should therefore only be considered for illustration
purposes, and we never recommend the Cyclotronic integrator with XDt P p. Examination of the Magnetron frequencies
extracted from the numerical experiment (Table in Fig. 5) shows that while the Cyclotronic integrator introduces less than
2% error, the Boris scheme is in error by a factor of 2.

Fig. 6 shows the fractional error in the characteristic frequencies
Fractional Error ¼ jxOutput �xTheoryj
xTheory

ð29Þ
against Dt for X/x0 = 5p/3. Both integrators appear second order accurate as expected, but the Cyclotronic scheme is one
order of magnitude more accurate for xMC and almost two orders of magnitude more accurate for xMag. This accuracy
gap increases with the ratio X/x0, and tends to infinity when X/x0� 1. However, if we aim for the typical 1% accuracy
on xMag, one sees in Fig. 6 that for the Boris scheme x0Dt 	 0.06 is required (i.e. XDt 	 0.3 as expected from Ref. [1]), while
the limit is x0Dt 	 0.3 for the Cyclotronic scheme: that is to say using the Cyclotronic scheme reduces the cost by a factor of
X/x0 (= 5p/3 ’ 5 in this case).

The vertical dashed line in Fig. 6 shows the Nyquist limit for the Modified Cyclotron frequency (xMCDt = p, where
xMC 	X).

5.2. Conservation properties

Fig. 7(a) shows the particle’s energy (W = WK + WP, Kinetic + Potential energy) evolution for x0Dt = 0.2. Neither of the two
algorithms show a secular energy drift. Although the Boris scheme conserves energy better here than the Cyclotronic inte-
grator, it is not a general rule and we have studied other test problems such as the magnetized Rydberg atom were the oppo-
site holds. Because the fourth order Runge–Kutta scheme is not time-reversible, it does not conserve energy.

Fig. 7(b) shows the canonical angular momentum conservation (Eq. (13)) for the same parameters as in Fig. 7(a). When
using the Cyclotronic integrator pu is exactly conserved. Indeed the Drift (Eq. (17)) is the mapping of a Larmor rotation and by
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definition conserves pu, and because of the cylindrical geometry of the potential the Kick (Eq. (18)) does not change vu. As
expected the Boris integrator introduces an error in pu but no secular drift as opposed to the fourth order Runge–Kutta
scheme.

5.3. Comparison of the Taylor expansion algorithm and the Cyclotronic integrator

Although unconditionally unstable, it is interesting to compare the Taylor expansion algorithm described in Section 4.4
with the Cyclotronic integrator for XDt = O(1).

Fig. 8(a) shows the particle position projected on the x-direction with parameters XDt = p and x0Dt = 0.2, with initial
conditions x = (�0.5,0,0) and v/x0 = (0,1,0). While the trajectory computed using the Cyclotronic integrator is bounded,
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such is not the case when using the Taylor expansion algorithm. As shown in Fig. 8(b) both schemes compute the same char-
acteristic frequencies; the spectrum associated with the Taylor expansion algorithm is however ‘‘polluted” by its instability.

6. Application 2: implementation in SCEPTIC

In PIC codes, the electric field is calculated self consistently with the position of a large number of particles; it is therefore

essential to resolve the plasma angular frequency xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nQ2=m�0

q
(Q and m are the particles’ charge and mass, and n is their

density). Plasma oscillations are very similar in nature to the motion in a Penning trap, since the plasma frequency can be

rewritten as xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQr2/j=m

q
with r2 / = Qn/�0, while dimensionally the Penning trap harmonic frequency is

x0 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQ@2/=@r2j=m

q
with / given by Eq. (19). The ideal Penning trap is therefore a key test problem in assessing the suit-

ability of an integrator to PIC codes, where stability and energy conservation are perhaps even more important than in an
orbit integration exercise.
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Fig. 9. Ion current Ii to the probe against XDt, normalized by the random thermal current I0
i ¼ 4pr2

pv ti=ð2
ffiffiffiffi
p
p
Þ (v ti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=mi

p
being the ion thermal speed).

The simulations parameters are Ti = Te, X ¼ 6:3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
=rp , kDe = 3rp and vd ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
. The dashed and solid arrows indicate the time-step at which 1%

accuracy on the ion current is reached with the Cyclotronic or Boris integrator. Two probe potentials are considered, leading to X/x0 ’ 4 (a) and X/x0 ’ 2
(b).
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Those are however not the only desired properties of an integrator; when studying the current collection by an electrode
for instance, also of importance is how accurately the particles’ trajectories are integrated close to the collector. As a second
benchmark of the Cyclotronic integrator, we now discuss its implementation in the kinetic code SCEPTIC, designed to study
plasma flows past a spherical probe. A detailed description of the code in the collisionless magnetized regime can be found in
Refs [6,7]. One of its key features is a Boltzmann description of the electrons, hence only the ions (charge e and mass mi) are
advanced according to Eq. (1).

We take as larger characteristic angular frequency x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
je@E=@rjp=mi

q
, where j@E/@rjp is the radial electric field deriva-

tive at the probe surface. For sufficiently large Debye lengths, j@E=@rjp ¼ j/pj=r2
p [7], where /p and rp are the probe bias and

radius.
Fig. 9 shows the evolution of the ion current Ii to the probe computed by SCEPTIC as a function of the time-step Dt, with

either Boris or the Cyclotronic integrator. The parameters used are Ti = Te (equal ion and electron temperatures), kDe = 3rp

(electron Debye length) and X ¼ 6:3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
=rp. Furthermore, we assume that at infinity (i.e. far from the probe) the plasma

is flowing with a drift velocity vd ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
parallel to the magnetic field.

It can be seen from Fig. 9 that regardless of the probe bias, when using Boris integrator, XDt [ 0.3 is required for a 1%
accuracy as predicted in Section 5.1. Achieving the same accuracy using the Cyclotronic integrator only requires
x0Dt [ 0.3, in conformity with our expectations as well.

For the parameters of Fig. 9(a) using the Cyclotronic integrator reduces the cost by X/x0 ’ 4, while the cost reduction in
Fig. 9(b) is X/x0 ’ 2. For higher magnetic fields or smaller probe bias, the benefit is limited to a factor of ten; indeed the
stability limit is XD t < p, approximately ten times larger than the Larmor constraint for the Boris scheme XDt [ 0.3.

It is important to mention that in this illustration the magnetization is rather high (average ion Larmor radius at infinity
rL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pTi=2mi

p
=X ¼ 0:2rp), and additional effects such as ion-ion Coulomb collisions are likely to affect the collisionless re-

sults shown in Fig. 9.
The Cyclotronic integrator has also successfully been implemented in a recent version of the full PIC code Democritus [8].

7. Summary and conclusions

The orbit integrator is a key ingredient in Particle In Cell codes and special care must be used in its choice, in particular
because particle advance is usually the most expensive step. The present publication is devoted to explicit schemes in the
presence of a background homogeneous magnetic field.

Because it is time-reversible, the Boris integrator (Eqs. (2) and (3)) is well known for its long term conservation properties.
It however suffers from the need to accurately resolve the Larmor frequency, which is inefficient if it is much larger than any
other characteristic frequency of the problem.

In order to dodge the Larmor constraint, Spreiter and Walter developed a particle mover in which the constant uniform
magnetic field is built in the propagation equations (Section 4.4). This algorithm is very attractive if the problem allows time-
steps much longer than the Larmor period [16], but too unstable otherwise (Fig. 4). In addition, it does not exactly conserve
energy, which could be a problem if used in codes where long-term particle tracking is necessary.
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The central message of this publication is that we have developed a new orbit integrator not subject to the Larmor con-
straint, which is second order accurate and symplectic (hence time-reversible) when the magnetic field is static and uniform;
provided the non-magnetic characteristic frequencies are accurately enough resolved, only the linear stability condition
XDt < p must be satisfied (Fig. 3). The Cyclotronic integrator can easily be implemented in leap-frog style as illustrated
by Eqs. (17) and (18), thus requiring only one field-evaluation per time-step.

The Cyclotronic integrator has successfully been implemented in the electrostatic PIC codes SCEPTIC [6,7] and in recent
versions of Democritus [8], where the cost of orbit integration has been reduced by up to a factor of ten.
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